Test of the adapting exponential integrate and fire model in NEST

This example tests the adaptive integrate and fire model (AdEx) according to Brette and Gerstner (2005) J. Neurophysiology and reproduces figure 3.D of the paper.
Note that Brette&Gerstner give the value for b in nA. To be consistent with the other parameters in the equations, b must be converted to pA (pico Ampere).
import nest
import nest.voltage_trace
import pylab

nest.ResetKernel()

First we make sure that the resolution of the simulation is 0.1 ms. This is important, since the slop of the action potential is very steep.
res=0.1
nest.SetKernelStatus({"resolution": res})
neuron=nest.Create("aeif_cond_exp")

Set the parameters of the neuron according to the paper.
nest.SetStatus(neuron, {"V_peak":20., "E_L":-60.0, "a":80.0, "b":80.5, "tau_w": 720.0})

Create and configure the stimulus which is a step current.
dc=nest.Create("dc_generator")

nest.SetStatus(dc,[{"amplitude":-800.0, "start":0.0, "stop":400.0}])

We connect the DC generators.
nest.Connect(dc,neuron,'all_to_all')

And add a voltmeter to record the membrane potentials.
voltmeter= nest.Create("voltmeter")

We set the voltmeter to record in small intervals of 0.1 ms and connect the voltmeter to the neuron.
nest.SetStatus(voltmeter, {"withgid": True, "withtime": True, 'interval':0.1})

nest.Connect(voltmeter,neuron)

Finally, we simulate for 1000 ms and plot a voltage trace to produce the figure.
pylab.axis([0,1000,-85,0])
brette_gerstner_fig_3d
                                # -*- coding: utf-8 -*-
#
# brette_gerstner_fig_3d.py
#
# This file is part of NEST.
#
# Copyright (C) 2004 The NEST Initiative
#
# NEST is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# NEST is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with NEST.  If not, see <http://www.gnu.org/licenses/>.

'''
Test of the adapting exponential integrate and fire model in NEST
-----------------------------------------------------------------

This example tests the adaptive integrate and fire model (AdEx) according to
Brette and Gerstner (2005) J. Neurophysiology and
reproduces figure 3.D of the paper.

Note that Brette&Gerstner give the value for b in nA.
To be consistent with the other parameters in the equations, b must be
converted to pA (pico Ampere).
'''

import nest
import nest.voltage_trace
import pylab

nest.ResetKernel()

'''
First we make sure that the resolution of the simulation is 0.1 ms.
This is important, since the slop of the action potential is very steep.
'''
res=0.1
nest.SetKernelStatus({"resolution": res})
neuron=nest.Create("aeif_cond_exp")

'''
Set the parameters of the neuron according to the paper.
'''
nest.SetStatus(neuron, {"V_peak":20., "E_L":-60.0, "a":80.0, "b":80.5, "tau_w": 720.0})

'''
Create and configure the stimulus which is a step current.
'''

dc=nest.Create("dc_generator")

nest.SetStatus(dc,[{"amplitude":-800.0, "start":0.0, "stop":400.0}])

'''
We connect the DC generators.
'''

nest.Connect(dc,neuron,'all_to_all')

'''
And add a voltmeter to record the membrane potentials.
'''

voltmeter= nest.Create("voltmeter")

'''
We set the voltmeter to record in small intervals of 0.1 ms and connect the voltmeter to the neuron.
'''
nest.SetStatus(voltmeter, {"withgid": True, "withtime": True, 'interval':0.1})

nest.Connect(voltmeter,neuron)

'''
Finally, we simulate for 1000 ms and plot a voltage trace to produce the figure.
'''
nest.Simulate(1000.0)

nest.voltage_trace.from_device(voltmeter)
pylab.axis([0,1000,-85,0])