
M
it
g
li
e
d
d
e
r
H
e
lm
h
o
lt
z-
G
e
m
e
in
sc
h
a
ft

CNS 2013 tutorial developing neuron
and synapse models for NEST
Part II: scheduling and the model API in NEST

July 13, 2013 Jochen Martin Eppler (j.eppler@fz-juelich.de)

Institute for Neuroscience and Medicine (INM-6)
Computational and Systems Neuroscience

mailto:j.eppler@fz-juelich.de


Outline

Scheduling in the NEST kernel

The API for neuron models

The API for synapse models

Parallelization issues

Model development workflow

References and further reading

This presentation is provided under the Creative

Commons Attribution-ShareAlike License 3.0

July 13, 2013 CNS 2013 tutorial developing neuron and synapse models for NEST Slide 2

http://creativecommons.org/licenses/by-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-sa/3.0/deed.en_US


Definitions and concepts

The network in NEST is a directed, weighted graph

Nodes represent either neurons or devices

Edges represent synapses between nodes

Nodes are updated on a fixed-time grid, while spikes can

be on the grid or in continuous time

Neurons can be arbitrarily complex, not just point neurons

Synapses are updated in an event-driven fashion

Parallelization and inter-process communication is

handled transparently by NEST

July 13, 2013 CNS 2013 tutorial developing neuron and synapse models for NEST Slide 3



Simulation loop

Simulation starts at t = 0

We simulate for Tstopms

U(St) propagates the
neuron state S to time t

VPs are virtual processes

∆ is the minimal delay in
the network

parallel on all threads

parallel on all processes

July 13, 2013 CNS 2013 tutorial developing neuron and synapse models for NEST Slide 4



Network update

Neurons and devices are updated in the order of their

creation

During the run of the update function, all previous events

are taken care of, and new events are created

Spikes are buffered for local and remote delivery in the

next time slice

All other events are delivered immediately to local nodes

Devices for stimulation and recording are replicated on

each VP, which also deliver locally

July 13, 2013 CNS 2013 tutorial developing neuron and synapse models for NEST Slide 5



Node update

During an interval of the minimal transmission delay in the

network (∆), neurons are effectively decoupled.

h
∆

time

T
0

0 T
∞

0 = T
0

1

The update function of nodes (U ) is called every∆ steps

The nth time slice of length∆ starts at T 0
n = n ·∆ and

ends at T∞

n = (n+ 1) ·∆

Internally, nodes use a time step of h (e.g. for solvers)

July 13, 2013 CNS 2013 tutorial developing neuron and synapse models for NEST Slide 6



Events

Each neuron type sends exactly one type of event, but can receive

many different types.

SpikeEvent is the most common event type for neurons. It

transmits one or more spikes (multitude)

CurrentEvent is sent by stimulating devices to transport a

current value

DataLoggingRequest is sent by themultimeter to query

recordables. Data is stored in the neuron

July 13, 2013 CNS 2013 tutorial developing neuron and synapse models for NEST Slide 7



Common infrastructure

Ring buffers are used for buffering incoming spike and

current events

Network::send() is a convenient wrapper for the internal

event delivery infrastructure

The Time class allows an easy conversion between ms

and integer simulation time steps

A Testsuite framework allows the integration of own unit

tests into NEST’s battery of tests

The Name class ensures consistent naming of public

variables and quantities in model classes

July 13, 2013 CNS 2013 tutorial developing neuron and synapse models for NEST Slide 8



The model API

Neuron and device models are derived from the base class Node.

Node

calibrate()
init_buffers_(const Node& prototype)
init_state_()

get_status(Dictionary& params)
set_status(const Dictionary& params)

get_gid() : long
get_network() : Network*

update(Time origin, int from, int to)
handle(EventT& event)

check_connection(Connection& c, port receptor)
connect_sender(EventT& event, port receptor)

Each node has a unique id

Through get_network(),

nodes access the Network

The user interface consists

of only two functions

A connection handshake

ensures valid connections

(Functions with EventT as argument type exist once for each event type)

July 13, 2013 CNS 2013 tutorial developing neuron and synapse models for NEST Slide 9



Calibration and initialization

Node::init_state_(const Node& prototype)

Called upon ResetNetwork

(Re-)initialize the model with the state of prototype

Node::init_buffers_()

Called before simulation, if buffers_initialized is false

Empty ring buffers and other buffers

Node::calibrate()

Called before simulation

Set variables depending on the simulator state (e.g. h)

July 13, 2013 CNS 2013 tutorial developing neuron and synapse models for NEST Slide 10



Calibration and initialization - example

models/iaf_neuron.cpp, lines 177-232

July 13, 2013 CNS 2013 tutorial developing neuron and synapse models for NEST Slide 11



Update

Node::update(Time origin, long from, long to)

Propagate to the end of the time slice starting at origin

Or: from and to allow simulating fraction of the slice

This function is called always at the beginning of the slice

During update, events may be created and sent

Internally, the resolution should be h (e.g. using a loop)

The model may be arbitrarily complex (or simple)

July 13, 2013 CNS 2013 tutorial developing neuron and synapse models for NEST Slide 12



Update - example

models/iaf_neuron.cpp, lines 238-281

July 13, 2013 CNS 2013 tutorial developing neuron and synapse models for NEST Slide 13



Receiving events

Node::handle(EventT& event)

handle() is called for each incoming event

The connection handshake ensures that only valid

connections can be created

Ring buffers can be used to store incoming events

Event::get_rel_delivery_steps(Time origin) can be used

to get the lag inside the time slice

Events are handled during the next update() cycle

July 13, 2013 CNS 2013 tutorial developing neuron and synapse models for NEST Slide 14



Receiving events - example

models/iaf_neuron.cpp, lines 283-306

models/iaf_neuron.h, lines 244-245

July 13, 2013 CNS 2013 tutorial developing neuron and synapse models for NEST Slide 15



Structured data storage

The different categories of variables are stored in structs to

increase the readability of the model.

Parameters_ are variables, which are set by the user, but

don’t change dynamically during simulation

State_ comprises the (observable) dynamical variables of

the model

Buffers_ are data structures for temporary storage of data,

e.g. file handles or buffers for incoming spikes/currents

Variables_ collects all remaining (helper) variables needed

for the implementation of the model

July 13, 2013 CNS 2013 tutorial developing neuron and synapse models for NEST Slide 16



Structured data storage - example

models/iaf_neuron.h, lines 172-271

July 13, 2013 CNS 2013 tutorial developing neuron and synapse models for NEST Slide 17



Parameters and state variables

The values in the structs for parameter and state must be set and

read by the user.

GetStatus and SetStatus allow the user to change/see the

current values of variables in the model

Parameters_ and State_ provide getters/setters

Getters/setters are called on temporary objects to

guarantee consistent values in case of errors

Dictionaries are used to transfer data back and forth

between user and simulation kernel

Standard names are used to guarantee consistency

July 13, 2013 CNS 2013 tutorial developing neuron and synapse models for NEST Slide 18



Parameters and state variables - example

models/iaf_neuron.cpp, lines 57-142

models/iaf_neuron.h, lines 335-361

July 13, 2013 CNS 2013 tutorial developing neuron and synapse models for NEST Slide 19



Recordables

To allow recording of data at runtime, a generic interface for the

multimeter is available.

Recordable analog quantities are inserted into a table that

maps variable names to functions

Data collection and buffering is carried out by the function

record_data() of the UniversalDataLogger

Recordable variables can be queried using GetStatus

The multimeter can be configured to record to screen, file,

or memory

July 13, 2013 CNS 2013 tutorial developing neuron and synapse models for NEST Slide 20



Recordables - example

models/iaf_neuron.h, lines 164-165

models/iaf_neuron.h, line 276

models/iaf_neuron.h, line 295

models/iaf_neuron.cpp, line 39

models/iaf_neuron.cpp, lines 45-50

models/iaf_neuron.cpp, lines 297

July 13, 2013 CNS 2013 tutorial developing neuron and synapse models for NEST Slide 21



Instantiation of nodes

All nodes are created by a factory, which copies the prototype

node for that type.

Model implementations need to define a copy constructor,

which copies parameters, state, and buffers of the prototype

On the user interface side of things:

New prototypes can be created using CopyModel

Model parameters are set with SetDefaults

Nodes are created using the command Create

July 13, 2013 CNS 2013 tutorial developing neuron and synapse models for NEST Slide 22



The synapse model API

Synapse models are derived from the base class Connection or

ConnectionHetWD.

ConnectionHetWD

check_connection(Node& s, Node& r, rport receptor, double lastspike)

check_event(EventT& event)

get_status(Dictionary& params)

set_status(const DictionaryDatum & d, ConnectorModel& cm)

send(Event& e, double lastspike, const CommonSynapseProperties &cp)

double : weight_

long : delay_

(Functions with EventT as argument type exist once for each event type)

Plastic synapses can modify the weight in send()

July 13, 2013 CNS 2013 tutorial developing neuron and synapse models for NEST Slide 23



Synapse models - example

models/stdp_connection.h, lines 175-187

models/stdp_connection.h, lines 195-237

models/stdp_connection.cpp, lines 57-77

July 13, 2013 CNS 2013 tutorial developing neuron and synapse models for NEST Slide 24



Connection handshake

ConnectionManager

new

check_connection(this, receptor_type)
new

check_event(e)

rport
rport

source

event

target

Connection

set_weight(w)

set_delay(d)

check_connection(source, target, receptor_type)
1

e

connect_sender(e, receptor_type)

2

4

3

5

The connection handshake ensures valid connections

July 13, 2013 CNS 2013 tutorial developing neuron and synapse models for NEST Slide 25



Parallelization in NEST

Model developers and users (mostly) don’t have to care about

parallelization.

A neuron n is created on the virtual process p, where

gid(n) mod NMPI == p

On all other VPs, a light-weight proxy is created

Devices are replicated on each VP to distribute load

There is one random number generator (RNG) per thread

In addition, there is a global RNG that is kept synchronized

July 13, 2013 CNS 2013 tutorial developing neuron and synapse models for NEST Slide 26



Registering models with the kernel

To make the new model available, add it to NestModule

Add the header and source files toMakefile.am

Add the header as include tomodelsmodule.cpp

Register the new model with the simulation kernel

This works the same for synapse and neuron models

In principle, it is also possible to write plugins (modules, but

the details are about to change

July 13, 2013 CNS 2013 tutorial developing neuron and synapse models for NEST Slide 27



Model development workflow

content

July 13, 2013 CNS 2013 tutorial developing neuron and synapse models for NEST Slide 28



Maintaining changesets

Changes to NEST can be maintained in a private git repository.

Use gbp-import-orig from the git-buildpackage suite

Import upstream releases into the upstream branch, keep

your own work in themaster branch

Every time a new version is released, import the new

sources into the upstream branch and merge them into

master

Alternatively rebasemaster on top of upstream

July 13, 2013 CNS 2013 tutorial developing neuron and synapse models for NEST Slide 29



References and further reading

The NEST Initiative homepage at www.nest-initiative.org

Gewaltig et al. (2012) NEST by example: An introduction to the

neural simulation tool NEST. doi:10.1007/978-94-007-3858-4_18

Hanuschkin et al. (2010) A general and efficient method for

incorporating precise spike times in globally time-driven

simulations. doi:10.3389/fninf.2010.00113

Kunkel et al (2012) Meeting the memory challenges of brain-scale

network simulation. doi:10.3389/fninf.2011.00035

Please tell us about problems. We only can fix what we know of!

July 13, 2013 CNS 2013 tutorial developing neuron and synapse models for NEST Slide 30

http://www.nest-initiative.org
http://dx.doi.org/10.1007/978-94-007-3858-4_18
http://dx.doi.org/10.1007/978-94-007-3858-4_18
http://dx.doi.org/10.3389/fninf.2010.00113
http://dx.doi.org/10.3389/fninf.2010.00113
http://dx.doi.org/10.3389/fninf.2010.00113
http://dx.doi.org/10.3389/fninf.2011.00035
http://dx.doi.org/10.3389/fninf.2011.00035


3D demo!

July 13, 2013 CNS 2013 tutorial developing neuron and synapse models for NEST Slide 31


	Scheduling in the NEST kernel
	The API for neuron models
	The API for synapse models
	Parallelization issues
	Model development workflow
	References and further reading

